- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0001200000000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Fortuin, Vincent (3)
-
Mandt, Stephan (3)
-
Aitchison, Laurence (1)
-
Arbel, Julyan (1)
-
Ashman, Matthew (1)
-
Boyd, Alex (1)
-
Dunson, David (1)
-
Filippone, Maurizio (1)
-
Hennig, Philipp (1)
-
Hernandez-Lobato, Jose_Miguel (1)
-
Hubin, Aliaksandr (1)
-
Immer, Alexander (1)
-
Jazbec, Metod (1)
-
Karaletsos, Theofanis (1)
-
Khan, Mohammad_Emtiyaz (1)
-
Kristiadi, Agustinus (1)
-
Li, Yingzhen (1)
-
Nemeth, Christopher (1)
-
Osborne, Michael_A (1)
-
Palla, Konstantina (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Papamarkou, Theodore; Skoularidou, Maria; Palla, Konstantina; Aitchison, Laurence; Arbel, Julyan; Dunson, David; Filippone, Maurizio; Fortuin, Vincent; Hennig, Philipp; Hernandez-Lobato, Jose_Miguel; et al (, Proceedings of Machine Learning Research)
-
Jazbec, Metod; Ashman, Matthew; Fortuin, Vincent; Pearce, Michael; Mandt, Stephan; Raetsch, Gunnar (, Proceedings of Machine Learning Research)null (Ed.)Conventional variational autoencoders fail in modeling correlations between data points due to their use of factorized priors. Amortized Gaussian process inference through GPVAEs has led to significant improvements in this regard, but is still inhibited by the intrinsic complexity of exact GP inference. We improve the scalability of these methods through principled sparse inference approaches. We propose a new scalable GPVAE model that outperforms existing approaches in terms of runtime and memory footprint, is easy to implement, and allows for joint end-to-end optimization of all componentsmore » « less
An official website of the United States government

Full Text Available